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ON A NONLINEAR CONGRUENTIAL 
PSEUDORANDOM NUMBER GENERATOR 

TAKASHI KATO, LI-MING WU, AND NIRO YANAGIHARA 

ABSTRACT. A nonlinear congruential pseudorandom number generator with 
modulus M = 2W is proposed, which may be viewed to comprise both linear 
as well as inversive congruential generators. The condition for it to generate 
sequences of maximal period length is obtained. It is akin to the inversive one 
and bears a remarkable resemblance to the latter. 

1. INTRODUCTION 

A standard method of generating uniform pseudorandom numbers in the interval 
I = [0,1) (denoted as PRN) is the linear congruential one, which is given as follows: 
For a large modulus M, let 

ZM={OO01 ...IM - 1}= Z/M. 

A sequence {yn} of integers in ZM is generated by the linear recursion 

(1.1) Yn+1l- CYn + b (mod M), n = O,1, ... 

where c, b E ZM,,. The PRN are obtained by the normalization 

(1.2) Xn = yn/M. 

This linear method is widely used, and has been investigated by several authors 
[9]. However, there is some drawback owing to the linearity of the recursion, e.g., 
so-called coarse lattice structure. This state of affairs provided the motivation for 
several recent proposals of nonlinear congruential generators [1, 5, 9, 12]. 

Among them, one of the most interesting is the inversive congruential method 
[12], with prime modulus (M = p for a prime p) or power of two modulus (M = 2W 
for a large integer w). The latter is described as follows: For M= 2W, let 

GAl I {1, 3, ..., M -1} I {positive odd integers less than M}. 

For any u E GM, there is a unique u E GM such that uu _ 1 (mod M). Now a 
sequence {Yn} C GM is generated by the inversive recursion 

(1.3) Yn+1-=Ya + b (mod M), n n 01 ... 
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in which a, b E ZM are chosen so that yn e GM implies Ym+? E GM. 
In the present note, we propose another nonlinear method similar to (1.3), i.e., 

for the modulus M = 2W, we put with yo E GM, 

(1.4) Yn+1l- aY + b + cYn (mod M), n = 0, 1, .. 

in which of course a, b, c E ZM should be chosen so that Yn C GM implies Yn+1 E 

Gm. The PRN {xn} is defined by (1.2). 
We will show that the modified inversive method (1.4) bears a close resemblance 

to (1.3). That is, we prove the following theorem. 

Theorem. Let M = 2w, w > 3. Then the PRN {xn} derived from (1.4) is purely 
periodic with period M/2 if and only if 

a + c-1 (mod 4) and b--2 (mod 4). 

Among the constants in the theorem, one of a or c may be zero, hence (1.4) can 
be viewed as to comprise both (1.1) and (1.3). 

The discrepancy as well as lattice structure of the sequence {xn }, generated by 
(1.4), will be studied in future papers. 

Our proof of the theorem is very similar to the proofs in [5, Theorem] and [12, 
Theorem 8.9]. But we hope that the modified method (1.4) would be of some 
interest. By the way, we note that the difference equation 

y(t+1) = y(t) +b+a/y(t) 

has been studied from the viewpoint of complex analytic theory [7, 8, 13, 14, 15]. 
Its solutions exhibit distinctly fractal features. 

2. PROOF OF THEOREM 

We divide the proof into three subsections (I),(II),(III). 

(I) Necessity. Write the period of {xn} as per(xn). Obviously, per(xn) < M/2. 
Suppose that {xn} is purely periodic with per(xn) = M/2. Then {yo,Y, ., 

YM/2-1} = GM, so we can assume that yo = 1. If we consider the sequence {Yn} 
modulo 4, then it has period 2; hence Y2 1 (mod 4). If this sequence is taken 
modulo 8, then it has period 4; hence Y2 =& 1 (mod 8), and so Y2 -5 (mod 8). Since 
u- u (mod 8) for u c GM, it follows from (1.4) that 

Y2=-c(a+b+c) +b+a(a+b+c) = (a+c)2 + (a+c+ 1)b mod8. 

Suppose a + c is even. Then b must be odd since y- a + b + c (mod 8) E Gm. Put 
a+c = 2r, b = 1 +2s. Then Y2 = 4r2+ (1 +2r)(1 +2s) = 1 +2(r+s) +4rs+4r2, 
which must be l I (mod 4). Hence, r+s = 2t, t C Z. Then yi = 1+4t -1 (mod 
4), which contradicts that {Yn} has period 2 (mod 4). Therefore, a + c must be 
odd. Hence, (a + C)2 =1 (mod 8), and we have 

Y2 + (a + c + 1)b (mod 8), 

so (a + c + 1)b-4 (mod 8). This implies a + c--1 (mod 4), b-2 (mod 4). 
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(II) Sufficiency for the case where c is an even number. Suppose a + c _ 
(mod 4) and b _ 2 (mod 4). Consider first the case yo = 1. For M = 8, it is checked 
by the above arguments that per(y,) = 4. Now let M = 2W with w > 4. 

In this subsection we suppose that c is an even number. 
Define a sequence {n} C GM, In = 0,1, 2, ..., by 

(2.1) an+2 n(aan2 + banacn+1 + Can+? 2) (mod M). 

Put ao = a, = 1. By induction on n, we obtain 

(2.2) Yn-?nan+1 (mod M), n = 0,1. 

Write (2.:1) as 

(2.3) - n+2(a + c)On + batn+1 + c/n (mod M), 

(2.3') an = -n(a)n+I _an 

With the integer matrix 

A-( ? 1) 

we see, from (2.3), that 

( n+1 ( n + c 
an?2 / n+1 O 

and so 

(2.4) (>n )-An ao? + R (mod M), 

where 

Rn 
cQn-10)n+cAQ 2) 

+ . 
+cAn-Q?). 

By induction on h > 2, using a + c -1 (mod 4), b-2 (mod 4), it is shown, as in 
[12, p.188], that for m= 2- 

(2.5) A?( 2mq? +j3m 2mp+3mr+1) 

for all h > 2, with some integers p, q. 
We will show that, for m = 2h (2 < h < w -1) 

(2.6) Rm = 4mSm 

for an integer vector Sm . Equation (2.6) holds for h = 2, since c is assumed to be 
even. Now suppose it holds for m = 2h. Then 

a,n = 1 +2m(p+q) +4mr+4mTO +4mSm(0) +SmM, 
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a,+, = 1I 2m(p +q) +6m +4mTi +4mSm(,) +Sm+iM 

with integers To, TI, sm, Sm+I, where we write Sm = t(Sm(O), Sm(1)). Hence, we 
have 

am = a0 + 2mUO, am+, = ab1 + 2mU1 

with integers Uo, U1. Then 

/3m = Tim { (1 + 2mUO)2 - (1 + 2mUi)2} = 4mWO = /o + 4mWO 

for an integer Wo. Thus, 

?am+2 = (a + c)(cao + 2mUo) + b(al + 2mU1) + c/3m = a2 + 2mU2, 

with an integer U2. It is easy to see that 

zim+l = ?il + 2mV1, Zim+2 = od2 + 2mV2. 

Then 

Om+ I= Tim+1{(I 2 + 2mU2)2 - (a, + 2mUi)2} 

= 4mdm+1 (a2 U2 - a1U1 + mU22 _ mU12) 

+ (dm+1 - Z1)( (a2 -aci) + ZV1(c 2 - ) 

= /l + 4mWi 

with an integer WI, since aek+l2 -O!k2 is divided by 8 for any k. 
Repeating this procedure, we get 

(2.7) am+k = ak + 2mUk with some integer Uk, k = O, ... , m- 1, 

(2.8) dm+k = cik + 2mVk with some integer Vk, k =, ..., m - 1, 

(2.9) /m+k = fk + 4mWk with some integer Wk, k = 0,..., m-1. 

Now 
( ?2m A2m O + R2(, 

( 2m+1 / /I 
in which we obtain by (2.9) 

(/232=-1 ) + cA (0m- + + cAm-1 

(2m l) (m-2m-20 + cAtm (0) +cAm+l (0) +V...cA2mI (0) 

(lS{C Q + cA ( Q + + cAm- c ( 0 0) 

+4Am{ (W )+ cA ( )+ .+cAm-1()} 

{ (m m- ) + A 2 + + Am-1 

=(I + Am) Rm + 4mcW, 



ON A NONLINEAR CONGRUENTIAL PSEUDORANDOM NUMBER GENERATOR 231 

thus by (2.5) and (2.6) we have, with an integer vector W, 

R2m = 8m {(I + Am)/2} Sm + 8m(c/2)W = 4(2m)S2m, 

since c is even by our assumption. Hence (2 6) holds for 2m - 2h+1. Thus, we 
obtain (2.6) for any m = 2h (2 < h < w - 1), from which we see by the above 
arguments that (2.7) holds for any m - 2h (2 < h <w -1). 

By (2.7) with m = M/2 (h = w - 1), we obtain can+M/2 = cn for any n, 
which implies Yn+M/2 Yn. Therefore, per(yn) divides M/2. Since we already 
know that per(yn)< M/2, to prove that per(yn) M M/2, it suffices to show that 
per(yn)> M/4. 

If we had per(yn) < M/4 , then YM/4 = yo = 1, and so aM/4+1 = aM/4 (mod M) 
by (2.2). However, by (2.4) with n = M/4, and by (2.5), (2.6) with h W-2, we 
obtain a contradiction CaM/4+1 _ a]M/4 + M/2 (mod M). So per(yn) M/2 is 
proved if yo = 1. In particular, {yYo, Yi, ..., YM/2-1} = Gm. If we have an arbitrary 
initial value yo E Gm , then the sequence Yo, Yi,... is a shifted version of the 
sequence with initial value 1, and so again per(xn) = per(yn) M/2. 

(III) Sufficiency for the case where c is an odd number. Now we turn to 
the case when c is odd. Then a must be even. 

The equation (1.4) can be written as 

(2.10) Yn+1 (a+c)yn+b+aanh1 (y-2) modM, 

i.e. , 
(Yn+1) _ a+c b) (Yn) +ra Zn moldM, 

in which zn = Yn (1-yn2). Put 

A (a+c b) 

We obtain that 
Yn An (Yf) +Ro , 

where 

(2.11) Rn a(Z ) +aA (Z 2)+ + aAn-l(Z) 

Since a + c- 1 (mod 4) and b _ 2 (mod 4), we see by induction that, for 
m = 2h, h > 1, 

(2.12) Am 1 + 4mPm 2m + 4mQm) 

with integers Pm and Qm . We will show that, for m = 2h, 1 < h < w -1, 

(2.13) Rm=4mSm, 
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with integer vector Sm = (sm, 0). Equation (2.13) is easily seen to hold for m = 
2 (h= 1). Suppose it holds for m= 2h. Then 

Ym = yo + 4mPmyo + 2m + 4mQr + 4msrn =yo + 2mUo 

with an integer Uo. Further, it is easy to see that 

Ym = Yo + 2mVo 

with an integer Vo. Then 

Zm = (go + 2mVO){1 - (yo + 2mUo)2} zo + 4mWo 

with an integer Wo, since zo 0 O. Then 

Ym+1 (a + c)(yo + 2mUO) + b + a(zo + 4mWo) 
-(a+c)yo +b+azo +2mUi = yi +2mUi. 

Repeating this procedure, we get, for k = 0, 1, ..., m - 1, 

(2.14) Ym+k = Yk + 2mUk, 

(2.15) Ym+k = Yk + 2mVk, 

(2.16) Zm+k Zk + 4mWk. 

Thus, with some integer vector Tm, 

R2m =a (Z2m-1) + aA Z2m ) + . + aAm-l (zm) 

+ aAm (Zm-)+aAm+l (Zm-2)+ aA2m-1(ZO) 

( aZm-i + aA (Zm-2) + aAm-1 (ZO 

+Am {a (z01) + aA )Zm-2) + aAm- (z0 } 
+ 4ma { ( Wo) +A W -2 ) .... + A 1 ( O ) } 

Rm + AmRm + 4maTm 

- 4 x (2m)[(I + Am)/2]Sm + 4 x (2m)(a/2)Tm 
- 4 x (2m)S2m, 

since a is even, which shows that (2.13) holds for 2m = 2h+1. Therefore, (2.13) 
holds for any m = 2h,1 <h <w -1. 

Hence, (2.14) holds for m = M/2 - 2w-1, i.e., we obtain YM/2 = yo. Thus, 
per(y,) divides M/2. Suppose per(y,)< M/4. Then YM/4 = YO. But by (2.12) 
and (2.13), we obtain YM/4 -Yo + M/2 (mod M), which is absurd. As in (II), we 
conclude that per(yn) = M/2. 
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